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Fast quantum algorithm for numerical gradient estimation
Stephen P. Jordan

Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits
of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only

one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of
large n.
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Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits
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What about QFT?
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Quantum harmonic oscillator

Hermite functions v, (x) = H, (x) o X2

| 2 +p2
Eigenstates of quantum harmonic oscillator (QHO): H = —.

2

Unbounded eigenspectrum + infinite basis — discretizing means we have to truncate

Molecular vibrations Quantum optics Quantum sensing



Quantum Hermite Transform

The Blog of Scott Aaronson

' If you take nothing else from this blog: quantum computers‘won't 60? GaUSSian GOldreiCh_LeVin

solve hard problems instantly by just trying all solutions in parallel. \
- Also, please read Zvi Mowshowitz's masterpiece on.how to fix K-12 education!

5 (f Shtetl- Optlmlzed / Quantum Hermite Transform and

| | Vishnu Iyer Siddhartha Jain
« BusyBeaver(6) is really quite large

ChatGPT and the Meaning of Life: Guest Post by Harvey Lederman » vishnu.iyer@utexas.edu sidjain@utexas.edu

Quantum Complexity Theory Student Project Showcase The University of Texas at Austin
#5 (2025 Edition)!

Sorry for the long blog-hiatus! | was completely occupied for weeks, teaching an JU-ly 307 2025
intensive course on theoretical computer science to 11-year-olds (!), at a math camp
in St. Louis that was also attended by my 8-year-old son. Soon I'll accompany my
12-year-old daughter to a science camp in Connecticut, where I’'ll also give lectures.

Abstract

There’s a great deal to say about these experiences, but for now: it’s been utterly

transformative and life-affirming to spend my days in teaching precocious, The representation of a function f : R® — R as a linear combination of Hermite polyno-

enthusiastic, non-jaded children the material | love in the real world, rather than ials can be seen as the Gaussian analosue of the Fourier expansion for Boolean functions
(let’s say) in scrolling through depressing world news and social media posts and ml n n ussian analogu urier expansion Ior I tunctlions.

emails from hateful trolls on my phone. It's made me feel 25 years younger (well, at Strengthening this analogy, we show that an approximate Hermite transform can be imple-
least until | need to walk up a flight of stairs). It’s made me want to go back to actual mented efficiently on quantum computers given black-box access to f. This implies that the
::;s}i"’;/ric: :&d“;fcmng’ which besides family and friends have been the main sources Gaussian analogue of the Goldreich-Levin learning problem can be solved on quantum comput-

ers with query complexity independent of n. With these tools, we give examples of provable

uantum advantage via Hermite sampling.
So on that note, and without further ado: | hereby present the latest Quantum q 8 ping

Complexity Theory Student Project Showcase! As the name suggests, this is where
| share a selection of the best research projects, from the students who took my

graduate class on Quantum Complexity Theory at UT Austin this past spring. ]_ Introducti()n

Most quantum complexity literature focuses on problems with discrete inputs, but it can pay off
to study continuous variable inputs. An early example of this is the observation by Jordan [Jor05]
that the Bernstein-Vazirani problem [BV97] looks like computing a gradient. Jordan generalized
the Bernstein-Vazirani algorithm to a function with inputs in R"” to give a single quantum query
numerical gradient estimation algorithm.
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Efficient Quantum Hermite Transform

Siddhartha Jain, Vishnu lyer, Rolando D. Somma, Ning Bao, Stephen P. Jordan

We present a new primitive for quantum algorithms that implements a discrete Hermite transform efficiently, in time that depends logarithmically in both the dimension and the
inverse of the allowable error. This transform, which maps basis states to states whose amplitudes are proportional to the Hermite functions, can be interpreted as the Gaussian
analogue of the Fourier transform. Our algorithm is based on a method to exponentially fast forward the evolution of the quantum harmonic oscillator, which significantly
improves over prior art. We apply this Hermite transform to give examples of provable quantum query advantage in property testing and learning. In particular, we show how to
efficiently test the property of being close to a low- degree in the Hermite basis when inputs are sampled from the Gaussian distribution, and how to solve a Gaussian analogue
of the Goldreich-Levin learning task efficiently. We also comment on other potential uses of this transform to simulating time dynamics of quantum systems in the continuum.

To do this, we need to show how to simulate the

guantum harmonic oscillator (a spring!) upto energy £
in time O(log” E).

Previous best was exponentially worse.
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International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman
Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is what Mike Dertouzos suggested that nobody would
talk about. I want to talk about the problem of simulating physics with
computers and I mean that in a specific way which I am going to explain.
The reason for doing this is something that I learned about from Ed
Fredkin, and my entire interest in the subject has been inspired by him. It
has to do with learning something about the possibilities of computers, and
also something about possibilities in physics. If we suppose that we know all

Yuri Manin made a similar proposal in
his book Computable and Uncomputable
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Efficient Quantum Hermite Transform
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o Start with functions with ®(1) overlap (Plancherel-Rotach)

e Use fixed-point search with optimal queries to converge to
eigenstate of quantum harmonic oscillator (uses fast-forwarding!)
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Nested commutators of QHO vanish!

(A, B] = AB — BA [A,B]. = [A,[A,B],_]

(X, pl,=—-8ix* = [x".p°l;=0
[p29 X2]3 — O

[p* {x,p)]1=—4ip> = [p"{x.p}l,=0
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This gives us a factorization into 3 terms :)

, i tan(¢/2)p? i sin()x? i tan(¢/2)p?
exp(—iHt) = exp(—T)exp(— > )exp(—T)

What about discretization?
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N
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Then we want that,

My (™~ Tp)) Myl < exp(-QV)
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Fast-forwarding QHO

0 N cM M

Low-energy: subspace with Medium-energy: High-energy:
rigorous guarantees discretization still works discretization fails

N = OM/log M)

Tricks required:

e Operator norm bound in low-
energy subspace, example

ITLy XTIy || < O(N")

* | eakage bounds, example
| (1 — )X Ty || < exp(—£2(M))
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Open Questions

Biggest question: more applications!
Upcoming work: Explicit Ramanujan quantum expanders built using QHT.

Characterize the class of Hamiltonians which can be exponentially fast-forwarded.

Better learning/testing algorithms in Gaussian space.

Applications to differential equations/quantum chemistry?



Thanks for your attention!

arXiv:2510.04929



