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Quantum harmonic oscillator
Hermite functions ψn(x) = Hn(x) e−x2/2

Eigenstates of quantum harmonic oscillator (QHO): .H =
x2 + p2

2

Unbounded eigenspectrum + infinite basis  discretizing means we have to truncate→

Molecular vibrations Quantum optics Quantum sensing
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Efficient Quantum Hermite Transform

To do this, we need to show how to simulate the 
quantum harmonic oscillator (a spring!) upto energy  
in time . 
 
Previous best was exponentially worse.

E
O(log2 E)
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The Feynman/Manin program
• Feynman proposed in 1981 to 

simulate quantum physics on 
a quantum computer, the first 
imagined application of QC

• Simulating  up to time  
takes time 

H t
≈ t∥H∥

• But for interesting classes of 
physically meaningful 
Hamiltonians, fast-forwarding 
is possible

What else is waiting 
to be found?Yuri Manin made a similar proposal in 

his book Computable and Uncomputable
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Efficient Quantum Hermite Transform

• Start with functions with  overlap (Plancherel-Rotach)Θ(1)

• Use fixed-point search with optimal queries to converge to 
eigenstate of quantum harmonic oscillator (uses fast-forwarding!)
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What about discretization?
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ΠN =
N

∑
k=1

|ψk⟩⟨ψk | H |ψk⟩ = λk |ψk⟩

Then we want that,

∥ΠN (eiHt − Ũ (x, p)) ΠN∥ ≤ exp(−Ω(N))
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Fast-forwarding QHO

N = O(M/log M)

Tricks required:


• Leakage bounds, example 
∥(I − ΠN′￼

)xaΠN∥ ≤ exp(−Ω(M))
• Operator norm bound in low-

energy subspace, example 
∥ΠNx2tΠN∥ ≤ O(Nt)
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Open Questions
• Biggest question: more applications! 

Upcoming work: Explicit Ramanujan quantum expanders built using QHT. 

• Characterize the class of Hamiltonians which can be exponentially fast-forwarded.

• Better learning/testing algorithms in Gaussian space.

• Applications to differential equations/quantum chemistry?



Thanks for your attention!
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