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Jones & Tonetti, Nonrivalry and the Economics of Data

“The economics of data is a new but rapidly 
growing field.”
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Communication Complexity

x y

z: (x,y,z) is a solution

Expressive
Can simulate models like query complexity, 

circuits, property testing, streaming and more

Tractable
Can prove unconditional lower bounds for 

problems we care about



Folklore 

“Communication is everything, 
everything is communication.”
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An example market

Data
Alice holds some data x which is useful for training models

Buyer
Bob has k machine learning models which he wants to train 

using Alice’s data

Communication
On payment, Alice sends a copy of her data to Bob
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Consumable Data
Asymmetric Direct Sum for One-way Communication

Defintion
R is a consumable data problem if Rk requires 

poly(k) CC(R) bits to be communicated

Strong version
R is a strongly consumable data problem if the 

same lower bound holds when Bob wants to solve 
any 2/3 fraction of instances
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Our results

Proof-of-concept examples
1. Linear Regression Sampling

2. Hidden Matching

Impossibility results
Decision problems

Linear
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Impossibility for decision problems

Key tool: Shadow Tomography
Introduced by Aaronson (2017), allows us 
to estimate the values of k two-outcome 

observables applied to a n qubit state 
using only polylog(n,k) samples

This gives rise to an easy communication 
protocol
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Application: A fair data auction
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Posted price data auction

Takeaway 
When using quantum 

communication, Alice’s 
payoff is proportional to 
the number of times x is 

used to generate 
solutions by Bob.

Classical
• b* is independent of k 

• Alice doesn’t know k 

• Alice’s payoff is O(1) 

VA = pb
VB = S(k,b) - pb

Quantum
• b* scales linearly with k 

• Alice’s payoff is O(k) 



Future work
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Open problems

• Can a non-cooperative communication model be used to get better 
consumable data properties information-theoretically?

We need new lower-bound techniques

• Can we use cryptographic primitives to create a more generic protocol?

Reminiscent of one-time programs 

• Can the lower bound for Hidden Matching be improved to linear in k?
Proof needs to avoid classical upper bound when k > √n 



Thanks for listening! 
Au revoir


