Communication Complexity

of Collision

Mika Göös (EPFL), Siddhartha Jain (EPFL \rightarrow U'T Austin)

CC lower bound for NATURAL two-party Collision

Collision

Collision

Given a list of N numbers in [N], say $z \cdot \operatorname{COL}_{N}(z)$ is a partial function only defined when z is

Collision

Given a list of N numbers in [N], say $z \cdot \operatorname{COL}_{N}(z)$ is a partial function only defined when z is $1-1$

Collision

Given a list of N numbers in [N], say $z \cdot \operatorname{COL}_{N}(z)$ is a partial function only defined when z is $1-1$ or 2-1. Well studied, motivated by cryptanalysis.

Collision

Given a list of N numbers in [N], say $z \cdot C O L_{N}(z)$ is a partial function only defined when z is $1-1$ or 2-1. Well studied, motivated by cryptanalysis.

- Randomised query complexity $=\theta(\sqrt{n})$ (folklore)

Collision

Given a list of N numbers in [N], say $z \cdot \operatorname{COL}_{N}(z)$ is a partial function only defined when z is $1-1$ or 2-1. Well studied, motivated by cryptanalysis.

- Randomised query complexity $=\theta(\sqrt{n})$ (folklore)
- Quantum query complexity $=\theta\left(n^{1 / 3}\right)$ [Aar02, AS04]

Bipartite Collision

Bipartite Collision

Now we split the binary encoding of each number in z to get two lists a, b. $\operatorname{BICOL}_{N}(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

Bipartite Collision

Now we split the binary encoding of each number in z to get two lists a, b. $\operatorname{BICOL}_{N}(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

Bipartite Collision

Now we split the binary encoding of each number in z to get two lists a, b. $\operatorname{BICOL}_{N}(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

How much communication is needed between A and B to decide BICOL_{N} ?

Bipartite Collision

Now we split the binary encoding of each number in z to get two lists a, b. $\operatorname{BICOL}_{N}(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

How much communication is needed between A and B to decide $B I C O L_{N}$?

Main theorem. BICOL_{N} has randomised (and even quantum) communication complexity $\Omega\left(N^{1 / 12}\right)$.

Communication and lifting

Communication and lifting

Technical barrier. Popular method to show communication lower bounds is lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

Communication and lifting

Technical barrier. Popular method to show communication lower bounds is lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.
$(f \circ g)(x, y):=f\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)$

Communication and lifting

Technical barrier. Popular method to show communication lower bounds is lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.
$(f \circ g)(x, y):=f\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)$
$\mathrm{Q}_{\text {artificial problem }}$

Communication and lifting

Technical barrier. Popular method to show communication lower bounds is lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem. $(f \circ g)(x, y):=f\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right) \quad g=X O R$
$\overbrace{\text { artificial problem }}$

Communication and lifting

Technical barrier. Popular method to show communication lower bounds is lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem. $(f \circ g)(x, y):=f\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)$
$\mathrm{Q}_{\text {artificial problem }}$

Communication and lifting

Technical barrier. Popular method to show communication lower bounds is lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.
$(f \circ g)(x, y):=f\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)$
$\overbrace{\text { artificial problem }}$
v. s. natural problem $B I C O L_{N}$

0111001001

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

$$
\begin{gathered}
\\
\\
=\left(a_{i}+z_{0}, b_{i}+z_{0}\right) \\
= \\
\left(a_{j}+z_{1}, b_{j}+z_{1}\right)
\end{gathered}
$$

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

$$
\begin{array}{ccc}
{\left[a_{1}+z\right]} \\
{\left[a_{2}+z\right]}
\end{array} \begin{array}{cc}
{\left[b_{1}+z\right]} & a_{i}+z_{0}=a_{j}+z_{1} \\
{\left[b_{2}+z\right]} & b_{i}+z_{0}=b_{j}+z_{1}
\end{array}
$$

\ldots	\ldots
a_{i}	b_{i}

$$
\left[a_{i}+z\right] \quad\left[b_{i}+z\right]
$$

$$
\left[a_{j}+z\right]
$$

$$
\left[b_{j}+z\right]
$$

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

\cdots	\ldots
a_{m}	b_{m}

$\left[a_{m}+z\right] \quad\left[b_{m}+z\right]$
z_{0}, z_{1} unique pair!

$$
\begin{aligned}
& \quad\left(a_{i}+z_{0}, b_{i}+z_{0}\right) \\
& =\left(a_{j}+z_{1}, b_{j}+z_{1}\right)
\end{aligned}
$$

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

No lifting this
for XoR:C

a_{j}	b_{j}
\ldots	\ldots
a_{m}	\ddot{b}_{m}

$$
\begin{array}{cccc}
{\left[a_{1}+z\right]} \\
{\left[a_{2}+z\right]}
\end{array} \begin{array}{cc}
{\left[b_{1}+z\right]} & \begin{array}{c}
a_{i}+z_{0}=a_{j}+z_{1}, \\
{\left[b_{2}+z\right]}
\end{array} \\
b_{i}+z_{0}=b_{j}+z_{1}
\end{array}
$$

$$
\Longrightarrow
$$

$$
\left[a_{j}+z\right] \quad\left[b_{j}+z\right]
$$

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

$$
\begin{array}{cc}
\cdots & \cdots \\
{\left[a_{m}+z\right]} & {\left[b_{m}+z\right]}
\end{array} \quad z_{0}, z_{1} \text { unique pair! }
$$

$a_{i}+b_{i}=a_{j}+b_{j}$

$$
\begin{gathered}
\\
\\
=\left(a_{i}+z_{0}, b_{i}+z_{0}\right) \\
=\left(a_{j}+z_{1}, b_{j}+z_{1}\right)
\end{gathered}
$$

XOR

A clever reduction for the case of $X O R$ by Itsykson \& Riazanov [IR20]

$$
\begin{array}{ccc}
{\left[a_{1}+z\right]} \\
{\left[a_{2}+z\right]}
\end{array} \begin{array}{cc}
{\left[b_{1}+z\right]} & a_{i}+z_{0}=a_{j}+z_{1} \\
{\left[b_{2}+z\right]} & b_{i}+z_{0}=b_{j}+z_{1}
\end{array}
$$

$$
\Longrightarrow
$$

$$
\left[a_{i}+z\right] \quad\left[b_{i}+z\right]
$$

$$
\left[a_{j}+z\right] \quad\left[b_{j}+z\right]
$$

$$
\left[a_{m}+z\right] \quad\left[b_{m}+z\right]
$$

$$
\begin{aligned}
& \quad\left(a_{i}+z_{0}, b_{i}+z_{0}\right) \\
& =\left(a_{j}+z_{1}, b_{j}+z_{1}\right)
\end{aligned}
$$

a_{i}	b_{i}
\ldots	\ldots
a_{j}	b_{j}

\ldots	\ldots
a_{m}	b_{m}

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

$$
a_{i}+b_{i}=a_{j}+b_{j}
$$

z_{0}, z_{1} unique pair!

Regular gadgets

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular if there is a group acting on its domain such that:

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular if there is a group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular if there is a group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.
- For any two (possibly equal) elements of the set, there is a unique group element taking the first to the second.

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.
- For any two (possibly equal) elements of the set, there is a unique group element taking the first to the second.

Regular gadgets

Main contribution. If g is a constant-sized regular function \Longrightarrow $C O L \circ g \leq B I C O L$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.
- For any two (possibly equal) elements of the set, there is a unique group element taking the first to the second.

VER

VER

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

VER

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	0	0	1	1
$\mathbf{1}$	0	1	1	0
$\mathbf{2}$	1	1	0	0
$\mathbf{3}$	1	0	0	1

(a)

(b)

VER

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

(a)
$V E R: \mathbb{Z}_{4} \times \mathbb{Z}_{4} \mapsto\{0,1\}$

(b)

Generators on $V E R^{-1}(1)$

VER

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

(a)
$V E R: \mathbb{Z}_{4} \times \mathbb{Z}_{4} \mapsto\{0,1\}$

(black) $(x, y) \mapsto(x+1, y-1)$
(orange) $(x, y) \mapsto(1-x,-y)$
(b)

Generators on $V E R^{-1}(1)$

Application

Application

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

Application

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves appending a 1-1 list to our input. We illustrate the property below.

Application

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves appending a 1-1 list to our input. We illustrate the property below.

Application

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves appending a 1-1 list to our input. We illustrate the property below.

Application

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves appending a $1-1$ list to our input. We illustrate the property below.

Thanks for listening! Au revoir

