
Communication Complexity
of Collision

Mika Göös (EPFL), Siddhartha Jain (EPFL UT Austin)→

Main result
CC lower bound for

NATURAL
two-party Collision

Collision

Collision
Given a list of numbers in , say . is a partial function only
defined when is

N [N] z COLN(z)
z

Collision
Given a list of numbers in , say . is a partial function only
defined when is

N [N] z COLN(z)
z 1-1

Collision
Given a list of numbers in , say . is a partial function only
defined when is

N [N] z COLN(z)
z or 2-1. Well studied, motivated by cryptanalysis.1-1

Collision
Given a list of numbers in , say . is a partial function only
defined when is

N [N] z COLN(z)
z

• Randomised query complexity = (folklore)θ(n)

or 2-1. Well studied, motivated by cryptanalysis.1-1

Collision
Given a list of numbers in , say . is a partial function only
defined when is

N [N] z COLN(z)
z

• Randomised query complexity = (folklore)θ(n)

• Quantum query complexity = [Aar02, AS04]θ(n1/3)

or 2-1. Well studied, motivated by cryptanalysis.1-1

Bipartite Collision

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

Bipartite Collision
Now we split the binary encoding of each number in to get two lists .

 is a partial function only defined when is 1-1 or 2-1.
z a, b

BICOLN(a, b) z

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

Bipartite Collision
Now we split the binary encoding of each number in to get two lists .

 is a partial function only defined when is 1-1 or 2-1.
z a, b

BICOLN(a, b) z

0111001001

01110 01001

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

Bipartite Collision
Now we split the binary encoding of each number in to get two lists .

 is a partial function only defined when is 1-1 or 2-1.
z a, b

BICOLN(a, b) z

How much communication is needed between A and B to decide
?BICOLN

0111001001

01110 01001

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

Bipartite Collision
Now we split the binary encoding of each number in to get two lists .

 is a partial function only defined when is 1-1 or 2-1.
z a, b

BICOLN(a, b) z

How much communication is needed between A and B to decide
?BICOLN

Main theorem. has randomised (and even quantum)
communication complexity .

BICOLN
Ω(N1/12)

0111001001

01110 01001

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

Communication and lifting

Communication and lifting
Technical barrier. Popular method to show communication lower bounds is
lifting. Given for which we know a query lower bound, we wish to
compose with a small “gadget" to create a two-party problem.

f
g

Communication and lifting
Technical barrier. Popular method to show communication lower bounds is
lifting. Given for which we know a query lower bound, we wish to
compose with a small “gadget" to create a two-party problem.

f
g

(f ∘ g)(x, y) := f(g(x1, y1), …, g(xn, yn))

Communication and lifting
Technical barrier. Popular method to show communication lower bounds is
lifting. Given for which we know a query lower bound, we wish to
compose with a small “gadget" to create a two-party problem.

f
g

(f ∘ g)(x, y) := f(g(x1, y1), …, g(xn, yn))

artificial problem

Communication and lifting
Technical barrier. Popular method to show communication lower bounds is
lifting. Given for which we know a query lower bound, we wish to
compose with a small “gadget" to create a two-party problem.

f
g

(f ∘ g)(x, y) := f(g(x1, y1), …, g(xn, yn))

artificial problem

Communication and lifting
Technical barrier. Popular method to show communication lower bounds is
lifting. Given for which we know a query lower bound, we wish to
compose with a small “gadget" to create a two-party problem.

f
g

(f ∘ g)(x, y) := f(g(x1, y1), …, g(xn, yn))

artificial problem

Communication and lifting
Technical barrier. Popular method to show communication lower bounds is
lifting. Given for which we know a query lower bound, we wish to
compose with a small “gadget" to create a two-party problem.

f
g

(f ∘ g)(x, y) := f(g(x1, y1), …, g(xn, yn))

artificial problem

natural problem BICOLN

XOR

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

a1
a2
…
ai
…
aj

…
am

b1
b2
…
bi
…
bj

…
bm

ai + bi = aj + bj

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

a1
a2
…
ai
…
aj

…
am

b1
b2
…
bi
…
bj

…
bm

ai + bi = aj + bj

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

a1
a2
…
ai
…
aj

…
am

b1
b2
…
bi
…
bj

…
bm

ai + bi = aj + bj

[a1 + z]
[a2 + z]

…
[ai + z]

…
[aj + z]

…
[am + z]

[b1 + z]
[b2 + z]

…
[bi + z]

…
[bj + z]

…
[bm + z]

(ai + z0, bi + z0)
= (aj + z1, bj + z1)

Image taken from https://github.com/greeenway/alicebobandeve

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

a1
a2
…
ai
…
aj

…
am

b1
b2
…
bi
…
bj

…
bm

ai + bi = aj + bj

[a1 + z]
[a2 + z]

…
[ai + z]

…
[aj + z]

…
[am + z]

[b1 + z]
[b2 + z]

…
[bi + z]

…
[bj + z]

…
[bm + z]

(ai + z0, bi + z0)
= (aj + z1, bj + z1)

Image taken from https://github.com/greeenway/alicebobandeve

ai + z0 = aj + z1,
bi + z0 = bj + z1

⟹

ai + bi = aj + bj

 unique pair!z0, z1

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

a1
a2
…
ai
…
aj

…
am

b1
b2
…
bi
…
bj

…
bm

ai + bi = aj + bj

[a1 + z]
[a2 + z]

…
[ai + z]

…
[aj + z]

…
[am + z]

[b1 + z]
[b2 + z]

…
[bi + z]

…
[bj + z]

…
[bm + z]

(ai + z0, bi + z0)
= (aj + z1, bj + z1)

Image taken from https://github.com/greeenway/alicebobandeve

ai + z0 = aj + z1,
bi + z0 = bj + z1

⟹

ai + bi = aj + bj

 unique pair!z0, z1

https://github.com/greeenway/alicebobandeve

XOR
A clever reduction for the case of by Itsykson & Riazanov [IR20]XOR

a1
a2
…
ai
…
aj

…
am

b1
b2
…
bi
…
bj

…
bm

ai + bi = aj + bj

[a1 + z]
[a2 + z]

…
[ai + z]

…
[aj + z]

…
[am + z]

[b1 + z]
[b2 + z]

…
[bi + z]

…
[bj + z]

…
[bm + z]

(ai + z0, bi + z0)
= (aj + z1, bj + z1)

Image taken from https://github.com/greeenway/alicebobandeve

ai + z0 = aj + z1,
bi + z0 = bj + z1

⟹

ai + bi = aj + bj

 unique pair!z0, z1

https://github.com/greeenway/alicebobandeve

Regular gadgets

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular functions. A bipartite function is said to be regular if there is a
group acting on its domain such that:

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular functions. A bipartite function is said to be regular if there is a
group acting on its domain such that:

• The orbit of any is exactly the pre-image .(x, y) ∈ f −1(b) f −1(b)

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular functions. A bipartite function is said to be regular if there is a
group acting on its domain such that:

• The orbit of any is exactly the pre-image .(x, y) ∈ f −1(b) f −1(b)

• For any two (possibly equal) elements of the set, there is a unique group
element taking the first to the second.

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular functions. A bipartite function is said to be regular if there is a
group acting on its domain such that:

• The orbit of any is exactly the pre-image .(x, y) ∈ f −1(b) f −1(b)

• For any two (possibly equal) elements of the set, there is a unique group
element taking the first to the second.

XOR is Regular

Regular gadgets
Main contribution. If is a constant-sized regular function

 with some polynomial blowup.
g ⟹

COL ∘ g ≤ BICOL

Regular functions. A bipartite function is said to be regular if there is a
group acting on its domain such that:

• The orbit of any is exactly the pre-image .(x, y) ∈ f −1(b) f −1(b)

• For any two (possibly equal) elements of the set, there is a unique group
element taking the first to the second.

XOR is Regular

(x, y) ↦ (x, y)
(x, y) ↦ (¬x, ¬y)

VER

VER
Bonus! Sherstov [She11] proved that approx degree lifts to approx rank
with VER. We note that VER is a regular function! Proof by picture.

VER
Bonus! Sherstov [She11] proved that approx degree lifts to approx rank
with VER. We note that VER is a regular function! Proof by picture.

VER
Bonus! Sherstov [She11] proved that approx degree lifts to approx rank
with VER. We note that VER is a regular function! Proof by picture.

VER : ℤ4 × ℤ4 ↦ {0,1} Generators on VER−1(1)

VER
Bonus! Sherstov [She11] proved that approx degree lifts to approx rank
with VER. We note that VER is a regular function! Proof by picture.

(black) (x, y) ↦ (x + 1,y − 1)

(orange) (x, y) ↦ (1 − x, − y)

VER : ℤ4 × ℤ4 ↦ {0,1} Generators on VER−1(1)

Application

Application
Proof complexity. We show a similar lower bound for the search problem of
natural bipartite analogue for the Pigeonhole Principle.

Application
Proof complexity. We show a similar lower bound for the search problem of
natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves
appending a 1-1 list to our input. We illustrate the property below.

Application
Proof complexity. We show a similar lower bound for the search problem of
natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves
appending a 1-1 list to our input. We illustrate the property below.

Application
Proof complexity. We show a similar lower bound for the search problem of
natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves
appending a 1-1 list to our input. We illustrate the property below.

Application
Proof complexity. We show a similar lower bound for the search problem of
natural bipartite analogue for the Pigeonhole Principle.

We do this by a simple search-to-decision reduction, which involves
appending a 1-1 list to our input. We illustrate the property below.

Thanks for listening!
Au revoir

