Communication Complexity ofCollision

Mika Göös (EPFL), Siddhartha Jain (EPFL →UT Austin)

Main result

(C) lower bound for NATURAL two-party Collision

Given a list of *N* numbers in [*N*], say *z*. $COL_N(z)$ is a partial function only defined when *z* is

Given a list of *N* numbers in [*N*], say *z*. $COL_N(z)$ is a partial function only defined when *z* is 1-1

Given a list of *N* numbers in [*N*], say *z*. $COL_N(z)$ is a partial function only defined when *z* is 1-1 or 2-1. Well studied, motivated by cryptanalysis.

Given a list of N numbers in [N], say z. $COL_N(z)$ is a partial function only defined when z is 1-1 or 2-1. Well studied, motivated by cryptanalysis.

Randomised query complexity = $\theta(\sqrt{n})$ (folklore)

Given a list of N numbers in [N], say z. $COL_N(z)$ is a partial function only defined when z is 1-1 or 2-1. Well studied, motivated by cryptanalysis.

- Randomised query complexity =
- Quantum query complexity = $\theta(n^{1/3})$ [Aar02, AS04]

$$\theta(\sqrt{n})$$
 (folklore)

 $BICOL_N(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

Now we split the binary encoding of each number in z to get two lists a, b.

 $BICOL_N(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

Now we split the binary encoding of each number in z to get two lists a, b.

 $BICOL_N(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

How much communication is needed between A and B to decide $BICOL_N?$

Now we split the binary encoding of each number in z to get two lists a, b.

 $BICOL_N(a, b)$ is a partial function only defined when z is 1-1 or 2-1.

How much communication is needed between A and B to decide $BICOL_N?$

Main theorem. $BICOL_N$ has randomised (and even quantum) communication complexity $\Omega(N^{1/12})$.

Now we split the binary encoding of each number in z to get two lists a, b.

lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

$$(f \circ g)(x, y) := f(g(x_1, y_1), \dots, g(x_n))$$

Technical barrier. Popular method to show communication lower bounds is

 $(x_n, y_n))$

lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

 $(f \circ g)(x, y) := f(g(x_1, y_1), \dots, g(x_n, y_n))$ Cartificial problem

lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

 $(f \circ g)(x, y) := f(g(x_1, y_1), \dots, g(x_n, y_n))$ $f(g(x_1, y_1), \dots, g(x_n, y_n))$

lifting. Given *f* for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

 $(f \circ g)(x, y) := f(g(x_1, y_1), \dots, g(x_n, y_n))$ $f(g(x_1, y_1), \dots, g(x_n, y_n))$

lifting. Given f for which we know a query lower bound, we wish to compose with a small "gadget" g to create a two-party problem.

$$(f \circ g)(x, y) := f(g(x_1, y_1), \dots, g(x_n))$$

V. S. natural problem $BICOL_N$

 $a_i + b_i = a_j + b_j$

 $a_i + b_i = a_j + b_j$

Alice	Bob	Alice	Bob
a_1 a_2	$b_1 \\ b_2$	$[a_1 + z]$ $[a_2 + z]$	$[b_1 + z]$ $[b_2 + z]$
a_i	b_i	$\longrightarrow [a_i + z]$	$\dots \\ [b_i + z]$
a_j	b_j	$[a_j + z]$	$[b_j + z]$
a_m	b_m	$[a_m + z]$	$[b_m + z]$
$a_i + b_i =$	$= a_j + b_j$	$(a_i + z_0) = (a_j + z_0)$	$(b_i + z_0)$ $(z_1, b_j + z_1)$

Alice	Bob	Alice	Bob
a_1 a_2	b_1 b_2	$[a_1 + z]$ $[a_2 + z]$	$[b_1 + z]$ $[b_2 + z]$
2 a _i	b_i		$[b_i + z]$
a_j	\cdots b_j	$[a_j + z]$	$[b_j + z]$
\dots a_m	$\cdots b_m$	$[a_m + z]$	$\dots \\ [b_m + z]$
$a_i + b_i =$	$= a_j + b_j$	$(a_i + z_0) = (a_j + z_0)$	$(b_i + z_0)$ $(z_1, b_j + z_1)$

$$a_i + z_0 = a_j + z_1,$$

$$b_i + z_0 = b_j + z_1$$

 $a_i + b_i = a_j + b_j$

 z_0, z_1 unique pair!

Alice	Bob	Alice	Bob
a_1 a_2	b_1 b_2	$[a_1 + z]$ $[a_2 + z]$	$[b_1 + z]$ $[b_2 + z]$
2 a _i	b_i		$[b_i + z]$
a_j	\cdots b_j	$[a_j + z]$	$[b_j + z]$
\dots a_m	$\cdots b_m$	$[a_m + z]$	$\dots \\ [b_m + z]$
$a_i + b_i =$	$= a_j + b_j$	$(a_i + z_0) = (a_j + z_0)$	$(b_i + z_0)$ $(z_1, b_j + z_1)$

$$a_i + z_0 = a_j + z_1,$$

 $b_i + z_0 = b_j + z_1$

$$a_i + b_i = a_j + b_j$$

 \Rightarrow

 z_0, z_1 unique pair!

Alice	Bob	Alice	Bob
a_1 a_2	$b_1 \\ b_2$	$[a_1 + z]$ $[a_2 + z]$	$[b_1 + z]$ $[b_2 + z]$
 a _i	 b _i	$ \longrightarrow [a_i + z] $	$\dots \\ [b_i + z]$
 a _j	\cdots b_j	$[a_j + z]$	$[b_j + z]$
a_m	b_m	$[a_m + z]$	$[b_m + z]$
$a_i + b_i =$	$= a_j + b_j$	$(a_i + z_0) = (a_j + z_0)$	$(b_i + z_0)$ $(z_1, b_i + z_1)$

No lifting thms for XOR: (

 $a_i + z_0 = a_j + z_1,$ $b_i + z_0 = b_i + z_1$

 $a_i + b_i = a_i + b_i$

 \Rightarrow

 z_0, z_1 unique pair!

CLAIM Only using the "regularity" (XOR

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular if there is a group acting on its domain such that:

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular if there is a group acting on its domain such that:

• The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular if there is a group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.
- element taking the first to the second.

For any two (possibly equal) elements of the set, there is a unique group

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.
- element taking the first to the second.

• For any two (possibly equal) elements of the set, there is a unique group

XOR is Regular

Main contribution. If g is a constant-sized regular function \implies $COL \circ g \leq BICOL$ with some polynomial blowup.

Regular functions. A bipartite function is said to be regular group acting on its domain such that:

- The orbit of any $(x, y) \in f^{-1}(b)$ is exactly the pre-image $f^{-1}(b)$.
- element taking the first to the second.

XOR is Regular

 $(x, y) \mapsto (x, y)$ $(x, y) \mapsto (\neg x, \neg y)$

• For any two (possibly equal) elements of the set, there is a unique group

with VER. We note that VER is a regular function! Proof by picture.

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

	0	1	2	3
0	0	0	1	1
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1

(a)

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

	0	1	2	3
0	0	0	1	1
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1

(a)

 $VER: \mathbb{Z}_4 \times \mathbb{Z}_4 \mapsto \{0,1\}$

Bonus! Sherstov [She11] proved that approx degree lifts to approx rank with VER. We note that VER is a regular function! Proof by picture.

	0	1	2	3
0	0	0	1	1
1	0	1	1	0
2	1	1	0	0
3	1	0	0	1

(a)

 $VER: \mathbb{Z}_4 \times \mathbb{Z}_4 \mapsto \{0,1\}$

Generators on $VER^{-1}(1)$

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

Proof complexity. We show a similar lower bound for the *search* problem of natural bipartite analogue for the Pigeonhole Principle.

Proof complexity. We show a similar lower bound for the search problem of natural bipartite analogue for the Pigeonhole Principle.

Proof complexity. We show a similar lower bound for the *search* problem of natural bipartite analogue for the Pigeonhole Principle.

Proof complexity. We show a similar lower bound for the *search* problem of natural bipartite analogue for the Pigeonhole Principle.

Thanks for listening! Au revoir