Separations
in Broof Complexity and TFNP

Mika Göös

William Pines Robert Robere Ran Tao
McGill

Siddhartha Jain Gilbert Maytre
Alexandros Hollender Oxford

Separations
in Broof Complexity

	Mika Gö̈s	William Pires
Ran Tao	Gilbert Mayytre	Columbia
Robert Robere	Alexandros Hollender	Siddhartha Jain
MCGill	EPFL	UT Austin

Separations
in Proof Complexity and TFNP

	Mika Gö̈s	William Pires
Ran Tao	Gilbeat Maytre	Columbia
Robert Robere	Alexandros Hollender	Siddhartha Jain
MCGill	EPFL	UT Austin

Understanding The Title

TFNP:= Total Function NP Polytime $R(x, y)$

TF NP:= Total Function $N P$ Polytime $R(x, y)$
Input x
Output $y: R(x, y)=1$ \& $|y| \leqslant|x|^{O(1)}$

TF NP:= Total Function $N P$ Polytime $R(x, y)$
Input x
Output $y: R(x, y)=1 \quad \& \quad|y| \leqslant|x|^{O(1)}$
Promise R is total: $\forall x \nexists y R(x, y)=1$

Two Problems

Sink- of -DAG (SOD)

Sink-of-Line $(S O L)$
$T_{\omega_{0}}(\underline{k} / 2)$ Problems

Sink- of-DAG (SoD)

Sink-of-Line (SOL)
End-of-Live (EoL)
... And Three Classes

$$
\begin{aligned}
& P L S=\left\{P: P \leq S_{0} D\right\} \\
& \text { PPADS }=\left\{P: P \leq S_{0} \angle\right\} \\
& \text { PPAD }=\left\{P: P \leq E_{0} \angle\right\}
\end{aligned}
$$

... And Three Classes

$$
\begin{aligned}
& \text { PLS }=\left\{P: P \leq S_{0} D\right\} \\
& P P A D S=\left\{P: P \leqslant S_{0} L\right\} \\
& \text { PPAD } \left.=\alpha P: P \leq E_{0} \angle\right\}
\end{aligned}
$$

White-box

Black-box

Classical hierarchy (90's and 00's)

[Pap94]
[JPy 88]

New classes (10's)

A Breakthrough Collapse (2021)

$$
\begin{aligned}
& \text { (Best papa!) } \\
& {[\text { FGHS21] }}
\end{aligned}
$$

Further Collapses (2022)

More Collapses? White -box sep. $\Rightarrow P \neq N P$ Black-box sep. possible

More Collapses? White-box sep. $\Rightarrow P \neq N P$ Black-box sep. possithle

Beame et al. 98'

More Collapses? White-box sep. $\Rightarrow P \neq N P$ Black-box sep. possible

Beame et al. 98' Marioka Ol' Buresh-Openheim 04^{\prime}

More Collapses?
No MORE (BLACK-BOX)
シ, OUR WORK
UEOPL
$F P$

Resolution v.s. Sherali-Adams

Resolution
$\frac{A \vee x, B \vee \neg x}{A \vee B}$ simulated by measure: width

Sherali-Adams

$$
\sum_{i} p_{i}(x) q_{i}(x)=1+J(x)
$$

measure: degree

Resolution v.s. Sherali-Adams

Resolution
$\frac{A \vee x, B \vee \neg x}{A \vee B}$ simulated by
measure: width

Sherali-Adams

$$
\sum_{i} p_{i}(x) q_{i}(x)=1+J(x)
$$

measure: degree

シ OUR RESULT 三: Simulation needs exp. large coefficients

Resolution v.s. Sherali-Adams

Resolution
$\frac{A \vee x, B \vee \neg x}{A \vee B}$ simulated by
measure: width

Sherali-Adams

$$
\sum_{i} p_{i}(x) q_{i}(x)=1+J(x)
$$

measure: degree
シ OUR RESULT 三: Simulation needs exp. large
I coefficients

World 1: Query analogues

World 1: Query analogues

- $d t$ query analogue

World 1: Query analogues

- $d t$

III
query analogue

- Reductions

III
Shallow decision trees

World 2: Proof Complexity
Is there a short derivation that this CNF is unsat?

Time to squint

Time to squint

The Bridge: Characterizations

- TFNP ${ }^{d t}$ search problems can be translated into CNF fallacies

SINK-of-dAG \mapsto "this dag has no sinks"

The Bridge: Characterizations

- TFNPdt search 中robkms can be translated into CNF fallacies

SINK-of-dAG \mapsto "this dag has no sinks"

Example: Res Width SPLS de depth
Search $\mapsto C_{N F}$
Keep going
down the dag going

The Bridge: Characterizations

- TFNPdt search probkms can be translated into CNF fallacies
- CNF fallacies define search problems

$$
\varphi=x_{1} \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge x_{2} \mapsto \quad \begin{gathered}
\text { find }\left(x_{1}, x_{2}\right) \\
\text { falsified clause }
\end{gathered}
$$

The Bridge: Characterizations

- TFNPdt search probkms can be translated into CNF fallacies
- CNF fallacies define search problems

$$
\varphi=x_{1} \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge x_{2} \mapsto \quad \begin{aligned}
\text { find } \\
\text { falsified claws }
\end{aligned}
$$

Example: Res Width $\gtrsim P L S$ de depth
"Flip" proof

The Bridge: Characterizations

The Bridge: Characterizations

The Bridge: Characterizations

Results rephrased:

The Bridge: Characterizations

The Bridge: Characterizations

The Bridge: Characterizations

Results rephrased:

- Res usa
- ReveRes $£ N S$
* Independent work [B T22]

Open Problems

Open Problems

Open Problems

On Separations

On Separations
Key Lemma: Robust separation of SOPL from NS

On Separations
SoD without
Key Lemma: Robust separation of Sop from NS

On Separations
SoD without
Key Lemma: Robust separation of SOPL from NS

$$
\left.\varepsilon-N S:=\sum_{i \in[m]} p_{i}(x) \cdot a_{i}(x)=1 \pm \varepsilon \quad \forall x \in \alpha 0,1\right\}^{2}
$$

On Separations
Key Lemma: Robust separation of Sop from NS

$$
\left.\varepsilon-N S:=\sum_{i \in[m]} p_{i}(x) \cdot a_{i}(x)=1 \pm \varepsilon \quad \forall x \in \alpha 0,1\right\}^{2}
$$

NOTE: Not a Cook-Reckhow proof system! verification is CONP-complete.

On Separations
Key Lemma: Robust separation of Sop from NS

$$
\left.\varepsilon-N S:=\sum_{i \in[m]} p_{i}(x) \cdot a_{i}(x)=1 \pm \varepsilon \quad \forall x \in \alpha 0,1\right\}^{2}
$$

NOTE: Not a Cook-Reckhow proof system!
verification is CONP-complete.
Lemma: Every $\frac{1}{2}-N S$ refutation of SoPLn requires deg $n^{\text {r.(1) }}$

On Separations
Key Lemma: Robust separation of SoiL from NS

$$
\left.\varepsilon-N S:=\sum_{i \in[m]} p_{i}(x) \cdot a_{i}(x)=1 \pm \varepsilon \quad \forall x \in \alpha 0,1\right\}^{2}
$$

NOTE: Not a Cook-Reckhow proof system! Verification is CONP-complete.
Lemma: Every $\frac{1}{2}$-NS refutation of SOPLn requires deg $n^{\text {n.(1) }}$
IDEA : Randomized decision-to-search reduction in the style of Raz-Wigderson 92'.
We show that ε-NS proofs imply approx poly for OR.

On Separations
Lemma: Every $\frac{1}{2}-N S$ refutation of SOPL n requires deg $n^{\Omega(1)}$.
\Downarrow
Lemma: Any degree-n ${ }^{0(11}$ SA proof of $S_{O} D_{n^{2}}$ requires coefficients of magnitude $\exp (\Omega(n))$.

